BioWide – 4 års udforskning af Danmarks biodiversitet

BioWide.dk
BIOWIDE
– 4 ÅRS UDFORSKNING AF DANMARKS BIODIVERSITET

Editor: Rasmus Ejrnæs

Udgiver: Aarhus Universitet
URL: http://www.au.dk

Udgivelsesår: 2018

Layout: Tinna Christensen, Silkeborg

Sideantal: 70
Trykt ved: Rosendahls – print • design • media

Internet version: Rapporten er tilgængelig i elektronisk format (pdf) på http://bios.au.dk/videnudveksling/formidling/
INDHOLD

FORORD ... 5

1 ØKOLOGISK RUM – FORSKINGSIDÉEN ... 7
 Økologisk rum – forskningsidéen bag Biowide ... 8

2 KORTLÆGNING AF BIODIVERSITET .. 15
 Danmarks hidtil dybeste biodiversitetskortlægning .. 16
 Karplanter og mosser ... 20
 Svampene i Biowide .. 24
 Hvirvelløse dyr .. 30
 Danske gødningsbiller – hvorfor kigge på dem? ... 36
 Mikroklima og biodiversitet ... 38
 Diversitetsmål: eDNA versus almindelig overvågning af planter? 40
 Fra jord til genetisk diversitet ... 42

3 NYE METODER TIL KORTLÆGNING AF BIODIVERSITET ... 45
 Biowides svampe sammenholdt med data fra luftbåren laser scanner 46
 Diversitet af planter, mosser, laver og svampe forklaaret med data fra luftbåren laser scanner ... 48
 En ny æra for kortlægning af natur ... 50
 ”Man against machine” – eDNA og svampe ... 52
 Genetiske fingeraftryk slårer om jordens herkomst .. 55

4 ØKOLOGISK RUM SOM RAMME FOR BIODIVERSITETEN .. 57
 Planter som indikatorer for resten af biodiversiteten .. 58
 Hvilke planterarter giver størst diversitet af svampe og insekter? 60
 Artsrigdom i det økologiske rum – forskning i proces! ... 62
 Hvordan definerer man egentlig unikhed for en lokalitet? 64
 Biowide: Hvad har vi så lært? ... 66
FORORD

Biowide er en hybrid af gamle traditioner og moderne tider, idet projektet på samme tid har bygget på klassiske biologiske metoder til inventering og bestemmelse af dyr, planter og svampe og helt moderne metoder til at sekvensere DNA-spor fra miljøet eller analysere data fra flybårne laserscanninger. Herved har vi fået en enestående mulighed for at evaluere de nye metoder i lyset af solide data indsamlet med hævdvundne metoder.

Det klassiske naturhistoriske artskendskab er ikke kun hævdvundet, men også en truet ekspertise. I hvert fald skal man være lidt heldig for at finde artseksperter på de biologiske institutter på vore dages universiteter. I dag meriterer man sig ikke på et stort artskendskab, men på en lang international publikationsliste, og det er gået hårdt ud over klassisk naturhistorisk faglighed. Biowide føltes derfor også lidt som et sidste udkald, hvis vi skulle nå at drage nytte af de efterhånden aldrende og ofte tillige arbejdsløse super-ekspyer inden for de forskellige organismergrupper.

Det har været en del af projektets formål at engagere frivillige og studerende i kortlægningen af biodiversiteten i Biowide og bruge de indsamlede data og projektets resultater til at formidle ny viden og begejstring for den danske natur til en bredere offentlighed. Det har vi gjort i artikler, foredrag og radio, men også ved at invitere interesserede amatører og studerende til at gå i mesterlære hos projektets eksperter. Vi er sikre på at Biowide på denne måde har været med til at stimulere interessen og kompetencerne hos den næste generation af artsnerørdere.

Vi sætter et foreløbigt punktum for Biowide med en konference på Aarhus Universitet 4. maj 2018, men projektet vil leve videre i lang tid. Dels er der videnskabelige artikler som endnu er på vej gennem tidsskrifternes fagfællebedømmelser, og dels bruges de indsamlede data i flere nye projekter. Vi stiller data frit til rådighed så andre forskere og studerende kan være med til at hente viden ud af data i årene fremover. Vi håber at denne samling af små artikler fra projektet kan være med til at formidle ny viden og begejstring for Danmarks fantastiske natur.

Det havde ikke været muligt at gennemføre projektet uden en bevilling fra Villumfonden på samlet 13,1 millioner kroner. Vi vil også takke alle de implicerede lodsejere og forpagtere for at imødekomme vores ønsker til placering af prøveflader i deres naturområder. Og vi vil takke alle de frivillige som har hjulpet med at finde, sortere og bestemme alle arterne i prøvefladerne.
Biodiversitet er ganske uhåndterligt og næsten ubegribeligt, med millioner af arter på planeten, utallige kombinationer arterne forekommer i og uendelige muligheder for interaktioner mellem arterne. Måske er det grunden til, at der ikke findes så mange generelle teorier, der kan forklare variationen i biodiversiteten, selvom der er videnskabelige studier som dokumenterer og analysere selvsame variation på tværs af eksperimenter, inven- terede lokaliteter eller kortlagte landområder.

I Biowide har vi kastet os over denne udfordring ved at foreslå, at det realiserede artsantal på et sted kan forudsiges, hvis man kender levemulighederne på dette sted. Denne kortlægning af levemulighederne har vi sat i system ved at foreslå et sådant økologisk rum kan defineres som levestedets abiotiske position, biotiske ekspansion og rumligt-tidslige kontinuitet.

I Biowide har vi udvalgt 130 prøveflader som skulle repræsentere variationen i Danmarks landbaserede natur. Vi har således natur med som er drivvåd og knæst, sur og basisk, næringsrig og næringsfattig, lysåben og trædækket samt naturlig og kultiveret. I hver af disse prøveflader har vi kortlagt biodiversiteten ved at registrere planter, mosser, laver, svampe og smådyr. Oven i registreringen af de planter, dyr og svampe man kan se med sine øjne, har vi samlet jordprøver som er blevet ekstraheret for DNA-rester, der er blevet sekvenseret, så vi kan se hvor mange forskellige arter som har afsat spor i jordbunden. For at teste idéen om økologisk rum har vi kortlagt position ved at måle fugtighed, næringsstoffer, pH, lys og temperatur og ekspansion ved at måle vegetationens struktur og sammensætning samt mængden af gødning, dødt ved, døde planterester, insektbestøvde blomster, myretuer mv. Endelig har vi kortlagt den tidslige og rumlige kontinuitet af naturen i prøvefladerne.

Idéen om økologisk rum er præsenteret i en videnskabelig artikel (se Figur 1) og i en serie populært-aglige artikler i Weekendavisens idé-tillæg (se de følgende artikler om økologisk rum).
Figure 1. Ecospaces mapped empirically for four contrasted biotopes in Denmark, showing how biotopes may vary independently in position, expansion, continuity and uniqueness; and how that affects α-diversity. Red: arable field, yellow: dry, old-growth forest, green: swamp forest, blue: lichen-rich dune. Position is represented here by two important abiotic gradients: soil moisture (% volumetric water content) and nutrients (% leaf P). Expansion is represented by build-up of different carbon sources: i.e. flower density (range = 0–70/m²), number of vascular plant species (No. plants; range = 0–60), canopy height (range = 0–8 m), litter mass (range = 0–150 g) and coarse woody debris (CWD; range = 0–50 m³). Continuity is divided into spatial (% cover of the ecospace type within 500 m) and temporal continuity of the biotope (years since last major environmental change). The ecospace (position, expansion and continuity) effect on α-diversity is illustrated by the white bars on the photos representing the number of species found (divided into arthropods (right), plants (middle) and fungi (left)). Uniqueness is an estimate of the rarity of the biotope at a larger scale estimated by 1/log (% national cover of ecospace type) of the given biotope. The higher the uniqueness, the more the biotope is expected to contribute to β-diversity, here represented by the number of red-listed species found in the four biotopes (red numbers). Photos: Lars Skipper.
Jordens Vandmuligheder

Biowide – 4 års udforskning af Danmarks biodiversitet

SERIE. Vi vil tage læserne med på en udforskning af de økologiske rum, hvor liv udfolder sig i naturen, og se på forhold som lys, nærings, vand, surhed og kulstof.

Serie. Vi vil tage læserne med på en udforskning af de økologiske rum, hvor liv udfolder sig i naturen, og se på forhold som lys, nærings, vand, surhed og kulstof. I denne uge handler det om vand.

Den våde undergrund

AF RASMUS EJNERS

Dronen og græfferen forhindrer regnvandet i at sive ned til grundvandet. Det går ud over moser og eng. (FOTO: NIELS FADEN/S kanFar)

Serie. Vi vil tage læserne med på en udforskning af de økologiske rum, hvor liv udfolder sig i naturen, og se på forhold som lys, nærings, vand, surhed og kulstof. I denne uge handler det om vand.

AF RASMUS EJNERS

Biolog, Institut for Bioscience Aarhus Universitet

Danmark.

Drøm og græfferen forhindrer regnvandet i at sive ned til grundvandet. Det går ud over moser og eng. (FOTO: NIELS FADEN/S kanFar)

Biowide – 4 års udforskning af Danmarks biodiversitet

SERIE. Vi vil tage læserne med på en udforskning af de økologiske rum, hvor liv udfolder sig i naturen, og se på forhold som lys, nærings, vand, surhed og kulstof. I denne uge handler det om vand.

Serie. Vi vil tage læserne med på en udforskning af de økologiske rum, hvor liv udfolder sig i naturen, og se på forhold som lys, nærings, vand, surhed og kulstof. I denne uge handler det om vand.

AF RASMUS EJNERS

Biolog, Institut for Bioscience Aarhus Universitet

Gift eller guld?

AF RASMUS ERNÆRS
Biology Institute for Vincinor
Aarhus University

Næringssuppe

Måske kan man redde sig et udkomme af de udnyttede i stofskiftet. Samme villkår gør os i stand til at nedbryde plantefibre. Der er stadig masser af der der sket en kæmpe ekspansion af mar.græs, ender i en varm kokasse på marken, er en del af de let omsættelige kulhydrater når fordi der skal være flow i en komave. Også nærheden af alle de næringsstoffer, som frigjort nedbyder plantefibrene til letomsættelige hvor højeffektive bakteriekulturer i rekord-hø. Inde i køer og andre drøvtyggeres maver svampe kan nedbryde kæmpe træstammer fibrenes lange kulhydratkæder op i mere sen, som består af fibre, kan vi ikke stille blade og græs, men hovedparten af biomas. Måske kan man redde sig et udkomme af de udnyttedes i stofskiftet. Samme villkår gør os i stand til at nedbryde plantefibre.

De sidste måntenorbister i Danmark lever af Samsøs solbagte kokasser.

Naturhistorisk Museum, Aarhus

Museumsinspektør, cand.scient.

AF MORTEN D. HANSEN
Museumsinspektør, cand.scient.
Naturhistorisk Museum, Aarhus

AF JACOB HELLMANN-CLAUSEN
Bio3D Center for Makroøkologi
Københavns Universitet

SERIE. Ved en udforskning af livets økologiske rum hen over sommeren er vi i denne uge på tur med. De høje, holdfaste kæmper er kraftcentre i naturen, og jo ældre, jo bedre. Som grønne generatorer eller mere er de planteverdens giganter. Som grønne generatorer

Et veteranbøgetræ fra Møns Klinteskov. Foto: Morten D. Hansen

De sidste måntenorbister i Danmark lever af Samsøs solbagte kokasser. Foto: Morten D. Hansen

Serie. Vi tager læserne med på en udforskning af de økologiske rum, hvor liv udfolder sig. I denne uge handler det om mag.

Fra hø til næringssuppe

AF MORTEN D. HANSEN
Museumsinspektør, cand.scient.
Naturhistorisk Museum, Aarhus

D er er så sandt for dyken ikke megen mere at fejke grøs. Vi er nemlig ikke det ensym-apparat, der gør os i stand til at nedbryde plantefibre. Dette sker nemlig i kokasser, i en skov, en park i en skov, en park i kraft af deres symbiotiske svampe, orme, insekter og andre smådyr. Dette sker i en skov, en park i kraft af deres symbiotiske svampe, orme, insekter og andre smådyr.

Vegetabiliske kitiner

Svampenes kitiner veddets cellulose til en grynet masse af træsmuld, er levested for meget lange årtier har gennemgået det faste ved til en grynet masse af træsmuld, er levested for meget lange årtier har gennemgået det faste ved.

Skovens gavmilde oldinge

AF JACOB HELLMANN-CLAUSEN
Bio3D Center for Makroøkologi
Københavns Universitet

Træer er forhøjede skaber. Med en højde på 30-40 meter er de de planteverdens gigantere. Som grønne generatorer omdanner de sollys, vand og kulstof til energiholdigt kulstof i et omfang, der må gøre enhver indgængningsgrene grene af misundel-er. Og de er ikke singapore. Herit mv taler de de døde grene, visse blade og nogle, som er gav for skovbundenes nyfødte at nedbryde, ikke mindst vampe, orme, insekter og andre smådyr. Samtidig transporterer de en betydelig del af deres produktion ned til mudder, som belønning til de talige mykorrhizasvampe, der hjælper dem med at optage vand og nærings- stoffer. Mykorrhizasvampe omdanner kulstoftil delikates som træter, kantarøder og karlibærsvampe, og videre i fædeblæsen, spørgvæggen, skovgevde og gräverne.

Andre vampe lever skitnes grene og stammen, som såkaldte endofytter. Der er en betydelig del af deres produktion ned til mudder, som belønning til de talige mykorrhizasvampe, der hjælper dem med at optage vand og næringsstoffer. Mykorrhizasvampe omdanner kulstoft til delikates som træter, kantarøder og karlibærsvampe, og videre i fædeblæsen, spørgvæggen, skovgevde og gräverne.

Andre vampe lever skitnes grene, som såkaldte endofytter. Der er en betydelig del af deres produktion ned til mudder, som belønning til de talige mykorrhizasvampe, der hjælper dem med at optage vand og næringsstoffer. Mykorrhizasvampe omdanner kulstoft til delikates som træter, kantarøder og karlibærsvampe, og videre i fædeblæsen, spørgvæggen, skovgevde og gräverne.

Andre vampe lever skitnes grene, som såkaldte endofytter. Der er en betydelig del af deres produktion ned til mudder, som belønning til de talige mykorrhizasvampe, der hjælper dem med at optage vand og næringsstoffer. Mykorrhizasvampe omdanner kulstoft til delikates som træter, kantarøder og karlibærsvampe, og videre i fædeblæsen, spørgvæggen, skovgevde og gräverne.
Tiden går ikke lige hurtigt ude i naturen. Jeg mærkede det første gang under feltarbejde på græsslandsbakkerne i Odsherred som ung specialestuderende i biologi. Når jeg glemte en blyant på Orhøjes sure græsland midt mellem en tue af bølget bunke og en nedbidt tormentil, kunne jeg til min glæde genfinde blyanten to måneder senere, nøjagtig hvor jeg havde lagt den i maj.

Havde jeg nu i stedet tabt blyanten i kalkgræsland på Ordrup Næs, ville myrerne have begravet den for evigt i en frodighed af kamgræs, hundegræs, hjertegræs, knopurter, lav tidsel, markkrageklo, krybende potentil, almindelig brunelle, due-skabiose, tveskægget ærenpris, lancet-vejbred, pimpinelle, røllike og mange flere.

Ved lav pH går den biologiske aktivitet i jorden næsten i stå. Jordbundsdyrene bliver færre, og det døde plantemateriale ophobes i stedet for at blive omsat af bakterier og svampe og derpå indgå i kredsløbet igen.

Selv for hedernes typiske planter kan jorden blive for sur. Så forsvinder guldblomme, blåbær, tyttebær og det mange heder, hvor de spændende planter skal findes langs grusvejene, hvor tilførsel af kalkrigt vejstøv modvirker forsuring, eller på oldgamle opgivnemarker i heden, som blev stiftet meget dengang de blev dyrket.

Hedelyng og teekogleaks. Foto: RASMUS EJRNÆS
KORTLÆGNING AF BIODIVERSITET
I 2014 gik vi i gang med at kortlægge Danmarks biodiversitet i dybden. I forrige kapitel kunne man læse om forskningsidéen om økologisk rum, og i de kommende artikler kan man læse om hvordan vi har grebet opgaven an og fundet og bestemt de mange forskellige planter, dyr og svampe samt den genetiske diversitet i jordbunden.

Figur 1. Placeringen af 130 prøveflader fordelt på fem regioner af Danmark (a). Indsat figur (b) viser den enkelte prøveflade som er 40×40 meter og opdelt i fire kvadranter inden for hvilke der er foregået mere detaljeret prøvetagning, bl.a. plantelister fra 4 cirkler med 5 m radius.
Vi kunne selvfølgelig ikke undersøge alle områder i hele Danmark, så vores første udfordring var at vælge et design for udlægning af prøveflader. Her valgte vi at stratificere prøvefladerne efter de vigtigste miljøgradienter og geografien ved at sikre at alle strata var repræsenteret i alle landsdele. De vigtigste miljøforhold på landdøden er jordbundsfugtigheden, næringsstoftilgængeligheden, vegetationsudviklingen og kultiveringsgraden. Vi afsatte 90 prøveflader så vi kunne placere 18 forskellige kombinationer af fugtighed (tør, fugtig, våd), næringsforhold (næringsrig, næringsfattig) og vegetation (åben, sluttet/krat, skov) i hver af de fem geografiske regioner af Danmark, som vi arbejdede i (se Figur 1). Desuden afsatte vi 30 prøveflader til at repræsentere det kultiverede landskab med 15 prøveflader i landbrugsarealer (dyrkede marker, græsmarker og brakmarker) og 15 prøveflader i plantager (bøg, eg og rødgran). Igen placerede vi en af hver af de seks strata i hver af de fem regioner. Endelig afsatte vi 10 prøveflader til at dække lokaliteter, som opfattes som de mest artsrige på tværs af organismegrupper i Danmark. Vi inviterede naturinteresserede til at komme med forslag til lokaliteter og stemme om forslagene. Af praktiske hensyn blev de endelige områder valgt, så to af disse potentielle ‘hotspots’ blev placeret i hver af de fem regioner, som vi i projektet opdelte Danmark i.

Vore analyser af data tyder på, at vi er lykkedes godt med at dække den økologiske variation i levevilkårene (se Figur 2), idet den variation vi dækker omfatter den samme variation som er dækket i et referencedatasæt for Danmarks natur med > 59.000 vegetationanalyser. Vore analyser viser også, at vi har fundet en stor del af Danmarks arter i projektet med mellem 20% og 80% af de kendte arter inden for så forskellige organismegrupper som storsvampe, karplanter, mosser, løbebiller og snegle (Tabel 1).

Figur 2. 95 percentile convex hull polygoner af Ellenberg F (fugtighed), L (lys) og N (kvælstof) værdier fra referencedatasættet (www.naturdata.dk) af lysåbne naturtyper og skove (blå, n= 59 227) i sammenligning med datasættet fra Biowide (rød, n=130). Sorte prikker angiver Ellenberg værdier fra de 130 Biowide lokaliteter.
Tabel 1. Antal fundne arter for hver taksonomisk gruppe i naturlige habitater (n=90), hotspots (n=10), plantager (n=15), landbrugsarea-ler (n=15) og samlet for alle 130 prøveflader. Antallet af arter fundet i det pågældende stratum er angivet for hver artsgruppe i parentes. Desuden er der opgjort hvor mange arter der i forvejen er kendt fra Danmark (ifølge www.allearter.dk). Endelig er det opgjort hvor stor andel af det totale antal kendte arter, som blev fundet i Biowide, samt hvor mange nye arter for Danmark der er fundet i Biowideprojektet.

<table>
<thead>
<tr>
<th>Naturlig</th>
<th>Hotspots</th>
<th>Landbrugs-</th>
<th>Plantage</th>
<th>Total</th>
<th>Kennt fra DK</th>
<th>Andel i Biowide</th>
<th>Nye arter (DK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal prøveflader</td>
<td>90</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Planter</td>
<td>601 (225)</td>
<td>330 (21)</td>
<td>192 (47)</td>
<td>131 (2)</td>
<td>719</td>
<td>2017</td>
<td>0.36</td>
</tr>
<tr>
<td># Mosser</td>
<td>221 (106)</td>
<td>96 (11)</td>
<td>20 (3)</td>
<td>78 (4)</td>
<td>254</td>
<td>621</td>
<td>0.41</td>
</tr>
<tr>
<td># Storsvampe</td>
<td>1550 (1013)</td>
<td>620 (134)</td>
<td>146 (19)</td>
<td>557 (131)</td>
<td>2040</td>
<td>3274</td>
<td>0.62</td>
</tr>
<tr>
<td># Lover</td>
<td>183 (92)</td>
<td>76 (9)</td>
<td>19 (5)</td>
<td>58 (3)</td>
<td>202</td>
<td>1035</td>
<td>0.2</td>
</tr>
<tr>
<td># Edderkopper</td>
<td>299 (95)</td>
<td>143 (6)</td>
<td>123 (3)</td>
<td>125 (12)</td>
<td>323</td>
<td>567</td>
<td>0.57</td>
</tr>
<tr>
<td># Svinefluer</td>
<td>87 (40)</td>
<td>31 (2)</td>
<td>42 (6)</td>
<td>20 (2)</td>
<td>97</td>
<td>296</td>
<td>0.33</td>
</tr>
<tr>
<td># Snegle</td>
<td>79 (23)</td>
<td>43 (0)</td>
<td>19 (1)</td>
<td>40 (2)</td>
<td>82</td>
<td>100</td>
<td>0.82</td>
</tr>
<tr>
<td># Løbebiller</td>
<td>104 (43)</td>
<td>33 (2)</td>
<td>51 (15)</td>
<td>35 (1)</td>
<td>122</td>
<td>336</td>
<td>0.36</td>
</tr>
<tr>
<td># Galler og miner</td>
<td>169 (108)</td>
<td>48 (10)</td>
<td>19 (6)</td>
<td>41 (16)</td>
<td>203</td>
<td>968</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Vi har kravet gennem alle prøveflader for at indsamle værker på jord, grene, stammer og mærg fra græssete dyr, og såvel kravende som flyvende insekter er blevet fanget i sindige fældef. Ny serie om sjældene eller hidtil ukendte arter i Danmark.

Danmarks vildeste natuforskning

FRA projektets start har vi virkelig fået kam til vores hår. Danmark er et af verdens mest opdyrkede lande, så det er det ikke nemt at finde så mange forskellige eksempler på uforsøgt dansk natur. Mange af de intakte naturområder består af ganske små areaal på dækket naturens geografiske og økologiske rum.

VIKING PROJEKTET BÅDE I**

BIOWIDE står for »biodiversity in width and depth« og er et samarbejde mellem forskere på Aarhus Universitet, Københavns Universitet og Naturhistorisk Museum i Aarhus.

Projektet løber fra 2014 til 2017. AT studere biodiversiteten i bredden indebærer, at vi undersøger biodiversiteten i et bredt udvalg af naturområder, hvor vi vilkårlig får dækket naturens geografiske og økologiske variation. Dybden er repræsenteret ved, at vi undersøger både karplanter, mosser, laver, svampe og hvivelvæsker, også dem der er svære at finde og sætte navn på.

Biodiversitet i dybden handler også om at indsamle jordprøver fra alle 130 prøveflader til efterfølgende ekstraktion og sekvensering af dna. Dyr, planter og svampe efterlader genetiske spor de steder, hvor de har levet, hvilket kan omsættes til lange ærligheder med de rette teknikker. I BioWide vil vi aldrig ikke stille os tilfærdige med at tælle de arter, vi kan få øje på eller indfange; vi vil også eftersøge de arter, som er uden for vores sansers umiddelbare rækkevidde, fordi de lever skuldet i jorden, genet iøres krones eller indledig som paramitterne og som børn når det kommer til dit elementale udbyd. Vi har lavet listen over planter, mosser og svampe i de 130 flader, vi har undersøgt øst for jordens grund legislation, og vi har valgt med udsigt til at finde så mange forskellige art.

Naturopplysningerne
Vi har undersøgt plantelivet i alle 130 flader og vi har både set på levermosser, bladmosser, tørvemosser og karplanter (ulvefødder, padderrokker, bregner, nåletræer og blomsterplanter). Basinventering blev gennemført af Irina Goldberg i fire 5 m-cirkler i hver flade. Supplerende registreringer foregik i et tæt samarbejde mellem professionelle botanikere og frivillige amatører. Både Dansk Botanisk Forening og Bryologkredsen blev inviteret til at deltage, og især mosforeningen blev dybt involveret i projektet.

Blandt artsige prøveflader finder vi også en stribe rigkær fordelt mere spredt i landet, fx Vandplasken i Vendsyssel og Odderholm i Midtjylland. I den tunge ende finder vi dyrkede marker, hvor der sjældent er meget enden en halv snes arter af karplanter og mosser tilsammen per prøveflade. For karplanterne er tætte granplantager meget artsfattige, men de kan til gengæld godt byde på mange mosser. Omvendt er brakmarker og kraftige habitater artsfattige for mosser, men har ofte pæn artsrigdom af karplanter.

Både de artsige og de usædvanlige habitattyper gav store botaniske oplevelser. For eksempel var det helt uventet, at liden sækmos dukkede op på Helm Hede i Sønderjylland. Det er andet fund i Danmark siden 1949 og det eneste i nyere tid. Vinget nerveløs i en pilemose ved vestenden af Thorsø, gyll nokdelt bryum i en tørvelavning i Midtjylland, stjerne-dværgstråd og koralrod i et meget vådt krat ved Temmerby Fjord i Hanherred er eksempler på sjældne arter, som ikke var kendt af moderne lokaliteter før. Men det var ikke mindre fedt at se dværg-småmos og homdrager i Jydelejet, bakke-fnokurt i Kællingdal ved Hanstholm, blomstersiv i Toggerup Tørvemose i Gribskov, trekneet alant og ager-kohvede i Røsnæs Krat, vellugtende skabiose på Diesbjerg, glinsende kærmos, stor skorpionsmos, dværg-ulvefod, mygblomst og pukkellæbe i Vandplasken, åben etagemos og spinkle tæppemos i en ellesump i Høstemark Skov, samt blød seglmos, stiv seglmos, salep-gø-
I stort set alle danske hjem kan man finde en vindueskarm med en overdådigt blomstrende orkidé. De fine og ofte farverige blomster leder tankerne hen på ferie i de varme lande. Orkidéerne i vindueskarmen er ganske sikkert fremavlet i et gartneri og måske købt i Ikea for en flad tyver!

Da vi i starten af juni 2014 nåede til BioWide-prøvefladen ved Tømmerby fjord i Thy, var det næsten som at komme til de varme lande.

I den mørke vintertid er der ikke meget grønt at se på derude i naturen. De fleste urter er visne, og træerne står uden blade. Mosserne drager dog fordel af det fugtige vinterhalvår uden skyggede nabo-planter og dannet levende grønne tæpper på træstammerne, i skovbunden og i moserne. I meget våde områder med kildevæld kan man finde særlig mange arter af mosser, også nogle meget sjældne.

Vinget nerveløs har hun- og hanplanter hver for sig, og spredningen sker ved hjælp af sporer, som dannes i sporehuse, som er langstilkede. Sporehuse er dog ikke observeret i Danmark, så man ved ikke, hvordan arten spreder sig fra sted til sted.

Alle arterne i nerveløsfamilien lever i en usædvanlig symbiose. Inde i deres løv vokser hylfetråde af basidiesvampe, som er af samme type som hos orkideerne.

Blank seglmos

Blank seglmos tilhører de mere usædvanlige mosser, der er ekslusivt knyttet til rigkær, en mosertype, der dannes, hvor grundvandet strømmer op nær overfladen i rigelige mængder. Grundvandet bevitter, at rigkær er ret basiske og næringsfattige, og naturenrummer en stor diversitet af små planter med mange sjældne arter.

Blank seglmos kendes på de stærkt krummede blade og på skudspidsen, der er formet som en bispesvæl. Selvom blank seglmos kendes fra en snævert lokaliteter, er det en sjælden mos-art med et truet levested, og den er tilsyneladende helt forsvundet fra Sjælland.
Thomas Læsøe

Svampelivet i de 130 prøveflader er blevet belyst på to måder. Her skal der berettes om feltinventeringer af frugtlegemdannende svampe, mens undersøgelsen af jordbundens svampeliv via DNA-sekvenser er omtalt andetsteds. Biowide-projektet fulgte lige efter et femårigt atlasprojekt, hvor der hvert år blev registreret ca. 50 nye svampearter for landet. Det var derfor forventeligt at også Biowide-projektet ville bidrage med nye svampearter, men omfanget skulle vise sig at være overraskende stort.

Hver prøveflade blev undersøgt i mere eller mindre kravlende position i ca. 3×2 timer, fordelt ud over sensommer-efterårssestsonen med to besøg i 2014 og et i 2015. En lille hånddrive blev brugt til at skille vegetationen ad, så også dybt siddende frugtlegemer kunne lokaliseres – en meget effektiv metode, der gav mange spændende fund. Understegnede besejrede alle lokaliteter oftest i selskab med en frivillig, der hjalp med at skrive noter og også med at lokalisere svampene. Kritiske arter blev ofte medtaget til yderligere studier eller i nogen tilfælde blot gennem et sprittrør. En lille prøve af alle arter blev ved de to første besøg gennem en fælles sprittrør (et pr prøveflade) til senere sekvensering. Jeg blev indkvarteret hos de frivillige sammen med det medbragte mikroskop, tørreapparat m.v. og de mørke timer blev brugt til at efterbestemme så mange som muligt af dagens fund. Resten blev gennem tørring til senere efterbestemmelse.

Den megen kravlen og arbejdet de sene nattetimer bag mikroskopet førte til mere end 10.000 svampefund, der fordelt sig på 1.774 forskellige svampearter. Yderligere besøg af frivillige i prøvefladerne gav en betydelig forøjelse af fund og arter, inklusive en række for landet nye arter.

Nogen af de mest registrerede og vidt udbredte arter inkluderer orange mosnavlehat, rødmaelket, hvidmaelket, blankstokket og kvist-huesvamp, grenet stødsvamp, rød ametysthat, skæv melhat og tendersvamp.

Knoldet stødsvamp, en international sjældenhed, var ikke set i Danmark siden 1864, men fandtes i en meget smuk forekomst under en stor enebærbusk i Helligkilde-prøvefladen på Djursland.

DEN findes mange trøfler i Danmark, men kun et par stykker kan ses at have kulinarisk interesse. Arterne kan deles mellem de ægte trøfler, der bliver opdaget i skov og på åben mark, og deres levevis er endnu uopklaret. SVAMPEREKOELER mødes ofte i byen i dag kan møde i byrummet i dag kan møde i byrummer i dag kan møde i byrummers i dag kan møde i bye
AF JACOB HEILMANN-CLAUSEN
Mykolog

EGETUNGE, Buglossoporus quer-
cinus, er en velkendt og meget ka-
arakteristisk svamp. Alligevel kan hun få set den, for den er yderst sjælden. Egetunge er et poresvamp der lever på meget gamle egetræer, hvor dens flødefårvede til lysebrune frugtlege-
mer vælker tunges i højommeter. Den lever af nedbrydelse af dødt, soldepooreret ved. Svampen dannet et såkaldt kerneråd i stammeds centrum, hvilket er med til at skabe hule egetræer, som er et
medium for det yngreflyvende arter af ægte tørme, svinebiter og rødbakke. Billelaverne lever blandt andre af at forsojde travemøgelhør i egemad.

Der er nøje riod om, at egetun-
ge er mere almindelig i Danmark
i gamle dage, hvor landskabet var tæt på gamle solbeskænkte egetræer. Nu
findes den kun stabt i Jægersborg Dyrehave, Sundstrup Skov og ved Løgnor på Lolland. De to sidste steder blev den fundet i BioWide-fladerne i sommeren 2014, og ved Løgnor vækse den sammen
med den endnu sjældnere egespø-
cialis, safrangul fedtporesvamp. Sammen med de lidt hyppigere arter, en helt andet af at forlade travemøgelhør i egemad.

Det er næppe riod om, at egetun-
ge er mere almindelig i Danmark
de gamle dage, hvor landskabet var tæt på gamle solbeskænkte egetræer. Nu

Af THOMAS LÆSSØE
Mykolog, BioWide-projektet

INTET er for små eller ufondenigt til at
blive nedbrudt af svamp. Selv de fineste
sporenskindes på bladmossers huser specielle, meget specialiserede svamp, det i sagens natur
producenter nogle meget små frugtlegem, helt
ned til under 50 µm (0.05 mm). Sammenlignet
med karplanter er mosser kendet for at være
rings færdemønter for små og store dyr; selv hvedens nem-
dyrøver synes at være bedre døde. Det afstrækket
kog dog ikke svampe, for der er formodentlig
mer end 20000 svampearter, der er dødelige
tilknyttet mosser. Selv om der er savsvampe,

der dominerer, finder vi en hel række bladfletter (lamebearvamp), der udelukkende lever på mere
eller mindre levende blad, tørve eller levnetre.
De to mest velkendte hedder henholdsvis
orange mosekarl (Rickella fimbriata) og
forvirret mosquehør (Boletus suillus). Disse små
mosquehører kan man finde snart sagt alle
steder, ikke mindst i gamle planter – så længe der
er moser. Slægtens moskål (Rickenella) er en
et meget kryptisk, sikte moskålne har skit af
med middagen og de dekal langere til
og de mindre hvide har også krækemuligt. Der findes
dreene arter i slægten. Almindelig moskål er, som navnet antyder, det almindelig,
men ikke moskål moser karakteriseret af et etnere,

Af ULRIK SØCHTING
Mykolog

Lovenud i BioWide-fladen Nissum. Det er en sydlig
laver, hvis sydgrænser går gennem Danmark.

De er truede, ikke af

og Sverige, og selvfølgeligt
er lever som et kvindeligt
i dag, mens de i sleevesamfund
er lever som et kvindeligt

den engang har vokset i et græs-
ningslandskab. De er truede, ikke af
(ømpeporesvamp, ekzemplarer
og træsvamp), bægerne falder af.

og Sverige, og Sverige, og
og Sverige.

eksstension, der

og Sverige.
BLÆKHATTE og Parykhatte er karakteriseret ved deres næsten sorte sporer og ved at lamellerne flyder hen ved modenheid, så der drypper »blæk« fra hattene. Den mest velkendte art, stor parykhat, Coprinus comatus, tidligere kaldet paryk-blækhat, er en almindelig gæst i græsplæner, og kan endda spises som ung. Almindelig blækhat, Coprinopsis atramentarius, er derimod berygtet for sine antabuslignende indholdsstoffer, så den skal man holde sig fra.

Godning fra planteædere er et vigtigt levested. Så snart kokassen eller hestepæren er lagt, starter en fascinerende succession, hvor forskellige svampe og larver på skift nedbryder gødningsens bestanddele og forvandler sig til biller, fluer og paddehatte.

Hvis man er eventyrlysten, så anbring en frisk hestepære eller kokasse på et tykt lag køkkenrulle på en tallerken og dæk den med en glasskål. Ved at holde papiret fugtigt kan man over de næste par uger opleve en fascinerende succession af svampe fra alle grene af svampetunet. Mange arter vil i processen skyde mørke sporer ud på glasskålen.
I Biowide har vi fokuseret på de hvirvelløse dyr, da prøvefladernes størrelse ikke egner sig til at tælle fugle og pattedyr. Det er også smådyrene som tegner sig for hovedparten af biodiversiteten. Over 20.500 af Danmarks godt 37.000 kendte arter er leddyr, og heraf er næsten 18.000 insekter. Leddyrfaunaen på en enkelt hektar dansk natur omfatter mange tusinde arter; således har en stædlig amatør med hjælp fra et utal af specialister registreret mere end 2000 forskellige arter af leddyr i sin have ved Silkeborg. Og der udstår måske stadig dobbelt så mange arter! En totalkortlægning af en leddyrsfauna – og læg dertil fx snegle og ledorme - på en lokalitet kræver derfor mange års feltarbejde, mange års arbejde i laboratoriet, og der vil stadig være arter, som ingen kan sætte navn på. Alene i det svenske artsprojekt har man konstateret mere end 1000 nye arter for Sverige, heraf mange nye for videnskaben!

Hvad skulle vi så stille op i Biowide-projektets 130 prøveflader, når projektets resurser begrænsede indsamlingsindsatsen? Vi valgte at fokusere på velkendte indsamplingsmetoder, som erfaringsmæssigt giver gode og sammenlignelige resultater i løbet af ganske få prøvetagninger. I midten af hver prøveflade blev der opstillet en såkaldt malaisefælde, som et telt, der indfanger flyvende dyr. Tilfangst af bestøvende insekter blev der op ad malaisefælden opstillet to gule fangbakker med fangvæske, i hjørnerne af prøvefladen blev der opsat fire faldfælder, som populært sagt er en spand, som overfladeaktive dyr falder ned i. Endelig blev der opsat lokkefælder med gødning og kød, ligesom projektet blev bundet af med en grundig inventering af landsneglefaunaen, ketsjning og bankning i vegetationen for at indfange insekter knyttet til vegetationen samt inventering af galler og miner ved målrettet eftersøgning. Ydermere blev der indsamlet jordprøver til uddrivning for jordbundssdyr.

To indsamlingsrunder i 2014 med malaisefælder, gule bakker og faldfælder resulterede i 780 prøver, der i enkelte tilfælde indeholdt over tusinde dyr. Dette materiale blev grovsorteret til orden (biller, årevingede, tovinger, edderkopper) og i visse tilfælde endda yderligere finsorteret, så specialister og frivillige kunne få netop den slags prøver, som de ønskede. I løbet af et år brugte biologistuderende i alt mange tusinde timer på dette
møjsommelige arbejde, og der var liv i laboratoriet hver eftren. Det blev til tusindvis af prøver, nærmere betegnet 6200, alle møjsommeligt etiketteret og for en del vedkommende gent fot seine undersøgelser, fordi der ikke var tid til artsbestemmelse i projektperioden.

I samlingerne på Naturhistorisk Museum gemmer sig stadig hundredtusinder af dyr fra Biowide-materialet. De er klar til at blive kigget på, hvis nogen har lyst. Laboratoriet står åbent!
Påfuglehveps

Det er ikke alle danske snylter, der har en karakteristisk skæg, men den pude af blått brune funderer, der ligger på siden og holder insekten i stand til at flyve, er helt unik. Den er ret let at kende.

MANGE edderkopper er ubronde, når de er vanligere at finde på fugtige liggendeplanter.

Atypus er cirka to centimeter lang og har et brunviolet skæg. Selv om bestanden lokalt kan øge på 25-20 dyr, er det primært en skjultesløjf som kun sjældent er tilstede.

Atypus er endnu mindre end et punkum i denne tekst – og blot 0,15 millimeter lange – mindre end et punkum i denne tekst – og blot 0,15 millimeter lange – mindre end en millimeter. Den har en mindre række af tænder i sine redningsvoksen, som er en almindelig, vild dansk plante i Danmark, der findes på fugtige vokser og steder.

DOMS HANS HENRIK BRUUN

Nordlig fugleedderkop

Nordlig fugleedderkop er en lille, men almindelig insekt. Den er ubronde, når den er vanligere at finde på fugtige liggendeplanter.

Atypus er cirka to centimeter lang og har et brunviolet skæg. Selv om bestanden lokalt kan øge på 25-20 dyr, er det primært en skjultesløjf som kun sjældent er tilstede.

Atypus er endnu mindre end et punkum i denne tekst – og blot 0,15 millimeter lange – mindre end en millimeter. Den har en mindre række af tænder i sine redningsvoksen, som er en almindelig, vild dansk plante i Danmark, der findes på fugtige vokser og steder.

DOMS MORTEN D.D. HANSEN

Nogle bier er stadigvæk almindelige, men mange arter har mistet levesteder og er blevet sjældne og kun lokalt udfærdet. Det sidste gælder for kæmpebladskærerbien, som på latin lyder navnet *Megachile lagopoda*, hvilket kan oversættes til »stor overlæbe og harefødder«. Det med harefødder er meget rammende for hannen, hvis forfødder er kraftigt udvidede og behårede, formentlig for at holde fast på hunnen under parring.

Hunnen udgraver enten selv sine underjordiske yngelrum eller bruger eksisterende hulrum. Her fører hun yngelcelerne med til haven og larverne. Hunnen har trøvligt med at patruljere territoriet, og enhver indtrænger jages bort.

I Sverige er kæmpebladskærerbi gået kraftigt tilbage, men i Danmark opretholder arten tilsyneladende gode bestande på såvel Djursland som i Odsherred. Den kan tages fra midten af juni til slutningen af juli.

For larven er gallen både logi, kost og beskyttelse mod fjender. Galmyggenes familie er meget artsrig med tusindvis af arter i verden og flere hundrede i Danmark. Hver af dem er specialister i at æde en enkelt plantear, ja, faktisk kun en bestemt del af planten. Der findes således en anden, fjernere speciel gall, som omdanner sød astragels blomsterknopper til galler, og en tredje som gør noget lignende med bladene.

Zoolog

En tilsvarende tilpassning ses hos sortplet tet blåfugl, der efter voldsom tilbagegang nu kun findes på Høvlebe på Møn, hvor BioWide også har en prøveflade.
Gødningsbiller bliver jævnligt brugt som indikatorer og mål for naturforvaltningen i det meste af Europa. De udgør en vigtig økologisk gruppe i græssede økosystemer og tegner sig sammen med gødningsfluer og gødningssvampe for en væsentlig del af biodiversiteten. Da gødningsbiller bruger gødning som deres eneste fødekilde, og flere bruger det til reproduktion, er de særligt følsomme overfor ændringer i miljøet (dvs. både i habitatet og substratet) og er dermed gode økologiske indikatorer for naturtilstanden. Da de både er sårbare og lette at overvåge, fordi de lokkes til lort, er det oplagt at inddrage dem som indikatorer for forvaltningen af biodiversiteten.

Omkring 45 % af arterne i Centraleuropa er truede eller udtøede, og de er fortsat i kraftig tilbagegang. Dette skyldes en stærk reducering af tilgængeligt møg hele året. Årsagerne hertil er i første omgang at vi har udryddet eller decimeret de store vilde planteædere og i anden omgang at husdyrene ikke længere græsser ude i naturen i samme omfang som tidligere. Herved begrænser tilgængeligheden af lort, både fordi de store græsædere er blevet færre, men også fordi de kun går ude i sommerhalvåret. Det reducerer gødningsmængden og perioden med tilgængelig lort. I Danmark er det en meget aktuel problemstilling, da ca. 62 % af landets areal udgør landbrug. Ikke nok med at de store græsædere kommer på stald i vinterhalvåret, de behandles også med ormemidler, der er giftigt for gødningsbiller. Sammen med intensivering og modernisering af landbruget, er reducering af skov og naturligt græsland og vådområder med store planteædere, de største udfordringer for gødningsbiller i dag.

Formålet med mit studium var 1) at vurdere om min fangstmetode kunne give et repræsentativt billede af den danske gødningsbillefauna, 2) at finde ud af hvilke økologiske faktorer på prøveflade- og landskabsniveau som har betydning for det danske gødningsbilleomfang, og 3) at vurdere om der er forskel på gødningsbillesamfund mellem forår, sommer og efterår og mellem mæg fra kører og kron-dyr. Jeg har både undersøgt individantal og artsrigdom, da individantallet måske afspiller fældernes virkningssgrad, dvs. fældens evne til at lokke billeter til, frem for tætheden af individer på lokaliteten.

Resultaterne viste at: 1) Jeg fangede 62% af de danske arter, hvilket er en god repræsentation af den danske gødningsbillefauna; 2) Der er tre generelle økologiske faktorer, der har betydning for gødningsbillefaunaen: mængden af tilgængelig lort, lysmængden i prøvefladen (jo mere lys, des flere arter) og variation i den omkringliggende natur (jo større variation, des bedre); 3) Artssammensætning (ikke artsrigdom), individantal og de rødlistede arter varierer mellem årstiderne, og lokkemadstypen havde kun begrænset effekt, dog viste min undersøgelse en tendens til, at flere arter foretrak krondyrlort om foråret, mens den næste generation foretrak kolort.

Altså kræver gødningsbiller tilgængelig frisk gødning i alle årstider og i alle habitattyper. Forvaltningen bør fokusere på store og varierede områder der har haft et lavt græsningstyk i mange år, da dette gavner flest mulige gødningsbillearter. Desuden bør der fokuseres på de rødlistede gødningsbillearter, da disse repræsenterer arter, der findes i alle naturtyper og i alle årstider.

En pdf kan rekvireres ved e-mail til forfatteren på: moeholt@hotmail.com.

Figur 2. Fordelingen af arts- og individantal i de tre årstider og i hhv. korndyr og kronmdyr.
Det er velkendt at abiotiske faktorer som lys, temperatur og fugtighed har betydning for hvilke arter, der findes i et bestemt område. De er en del af det økologiske rum. Nogle planter er f.eks. i stand til at leve under meget skyggede forhold, hvor andre har brug for mere lys; andre plantearter igen kan være tilpasset tørre og varme forhold ved at have et stort og dybtdækkende rodn, eller specielle bygningstræk som modvirker fordampning. Også hos dyrene finder man forskellige tilpasninger til mikroklimaet – det kan både være fysiske tilpasninger, som produktion af "frostvæske" til at sænke cellernes frysepunkt – eller adfærdsmæssige tilpasninger, som f.eks. at kunne grave sig ned i jorden eller kun være aktiv på bestemte tider af døgnet.

For bedst muligt at kunne kortlægge et steds abiotiske position, er det ikke nok at måle temperatur og lys, man må også vide hvilke aspekter af klimaet, der har betydning. Er det f.eks. minimums- eller gennemsnitstemperaturen, der bedst kan fortælle os noget om biodiversiteten på stedet? Eller er det måske variationen over døgnet? For at undersøge dette, målte vi lysintensitet, overfladetemperatur, lufttemperaturen, relativer luftfugtighed og jordfugtighed i hver af de 130 prøveflader. Jeg omregned derefter rådata til en lang række meningsfulde indeks, og undersøgte hvilke indeksværdier som bedst kunne forklare forskelle i artssammensætning af hhv. planter, edderkopper og epifytter (mosser og laver). At lige netop disse tre organismegrupper blev valgt, skyldes dels at de forekommer i næsten alle slags habitater, dels at vi formodede at de fem målte klimavariabler kunne have betydning for arterne.

Resultaterne viste, at det for lys var 85%-percentilen, der korrelerede bedst med fordelingen af arter. Det fortæller os, at et mål for hvor meget lys et sted modtager i løbet af en hel dag, er bedre at bruge til kortlægning af den abiotiske position end f.eks. den maksimale lysintensitet.

For både luftfugtighed, overfladetemperatur og lufttemperatur var det forskellen mellem den gennemsnitlige værdi for dagtimerne og nattimerne, der korrelerede bedst med fordelen af arter. Dette er i høj grad et udtryk for graden af vegetationsdække, hvorfor også disse indeks korrelerede godt med prøvefladernes successionsstadie (Figuur 3). Under skovens trækroner er temperaturen generelt lavere i løbet af dagen og højere i løbet af natten sammenlignet med et åbent område med et lavt vegetationsdække. Luftfugtigheden var stort set ens for alle prøveflader om natten, mens flader med et større vegetationsdække var bedre til at holde en høj luftfugtighed på en varm og solrig dag end de åbne prøveflader. Et sigende indeks for luftfugtighed kunne derfor ligeså vel have været gennemsnittet.

For jordfugtighed var der kun foretaget en enkelt måling 16 steder i hver prøveflade, så mængden af indeks, der kunne laves var begrænset – her viste gennemsnittet sig som det bedste mål.

Mikroklima kan variere betydeligt inden for ganske få centimeter eller meter. I Biowide blev der i hver prøveflade placeret et enkelt dataloggerpar, som målte lys, luftfugtighed,
overflade – og lufttemperatur. For at undersøge variationen i mikroklima inden for prøvefladerne, og dermed hvor repræsentativ dette ene dataloggerpar var for hele prøveflads mikroklima, placerede jeg yderligere 16 dataloggere i seks udvalgte prøveflader med forskellig successionstrin og fugtighed på Sjælland. Ikke overraskende viste variationen inden for prøvefladerne sig at være størst for lys, hvor 17,9 % af den totale variation kunne forklares af variationen inden for fladerne. For lufttemperaturen var dette resultat derimod stort set lig 0 % (Tabel 11). Selvom variationen inden for prøvefladen var højest for lys, var det dog også den klimafaktor som var bedst til at skelne mellem prøveflader, hvorimod variationen i vejret (periode) forklarede mest af variationen i lufttemperatur og luftfugtighed.

Tabel 11. Tabellen viser hvor stor en procentdel af den totale variation i de fire mikroklimaindeks, der kan tilskrives hhv. variationen mellem periode (4 perioder af 5 dage), variationen mellem prøveflader og variationen inden for prøvefladerne. Gns. Diff. er differensen mellem den gennemsnitlige værdi for dag og nat.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation mellem perioder</td>
<td>4.8 %</td>
<td>23.6 %</td>
<td>55.3 %</td>
<td>59.7 %</td>
</tr>
<tr>
<td>Variation mellem prøveflader</td>
<td>74.0 %</td>
<td>52.9 %</td>
<td>31.2 %</td>
<td>21.2 %</td>
</tr>
<tr>
<td>Variation inden for prøveflader</td>
<td>17.9 %</td>
<td>8.8 %</td>
<td>0.01 %</td>
<td>2.2 %</td>
</tr>
</tbody>
</table>
DIVERSITETSMÅL:
eDNA VERSUS ALMINDELIG OVERVÅGNING AF PLANTER?

Anne Aagaard, phd-studerende, Bioscience AU

Biodiversitetskrisen er over os. Derfor er behovet for at kunne måle biodiversitet og overvåge økosystemer større end nogensinde før, både så vi får en forståelse af, hvor de største ændringer sker, men også så vi har en chance for at forvalte vores økosystemer baseret på fakta. Dette gælder i Danmark, såvel som i resten af verden. Én metode, som måske kan hjælpe os i denne udfordring, er environmental DNA, også kaldet miljø DNA. I dette projekt under Biowide blev eDNA fra jordprøver testet for sin evne til at måle diversitet sammenlignet med almindelige floraundersøgelser. I dette forøg, blev der isoleret DNA fra jordprøver indsamlet i Biowides prøveflader og DNA fra disse prøver blev ekstraheret i laboratoriet. Herefter blev der isoleret to stykker plante DNA, ITS2, et stykke fra kernenogmet, og trnL p6-loop, et stykke kloroplast DNA. Fælles for begge markører (DNA stykker) er, at det er små stykker DNA – en fordel når man arbejder med mere eller mindre nedbrudte planterester i jordprøver. Når DNA’et er blevet sekventeret, står man med store elektroniske fiener med millioner af sekvenser. Nu er opgaven at få sekvenserne koblet til arter og give et mål for diversiteten i prøvefladerne.

Sammenligningen af plantedata fra eDNA og fra en almindelig florainventering blev baseret på flere parametre. Her er en opsamling af resultater fra trnL p6-loop markøren:

1. Plante eDNA genfandt de floristiske samfund på samme vis som en almindelig flora overvågning, og kunne samtidig detektere miljøgradienter: næringsniveau, successionsstadium og fugtighedsniveau.
2. Alfa-diversitet, målt ved eDNA data, viste en signifikant sammenhæng med artsrigdom i den almindelige florainventering, men med meget lav forklaringsgrad, og kunne derfor ikke pålideligt estimere artsrigdommen i felterne.
3. Arts- og taxongenkendelsen varierede, men eDNA-data genfandt op til 35,7 % af de familier vi vidste var til stede i felterne, baseret på de floristiske undersøgelser. På arts- og slægts-niveau var genfindelsesprocenten endnu lavere.

Alt i alt, er konklusionen, at netop dette stykke DNA ikke kan hamle op med en regulær floraundersøgelse, hverken hvad angår genkendelse af arter/taxa, måling af diversitet uden artsogenkendelse, tidsforbrug, eller omkostninger (beregningerne er ikke vist her), men genkendelsen af forskelle imellem prøvefladerne er ligeså tydelig i eDNA data, som den er i de floristiske data. Der er mange grunde til at vi ikke kan (gen)finde de specifikke arter vi ved eksisterer i prøvefladerne, og jeg vil undlade at liste dem alle op her. Jeg vil dog fremhæve én vigtig parameter, nemlig hvilket stykke DNA man vælger. Vi ved, at nogle steder er DNA’et er mere variabelt mellem arter, hvilket betyder at man får en bedre genkendelse på artsniveau. ITS2, der også blev isoleret i dette projekt, er et sådan stykke DNA. Desværre nåede jeg ikke at kigge på dén markør under mit speciale. Den virkelige styrke ved eDNA er dog ikke plantegenkendelse isoleret set, men dét at eDNA fra fx jord kan give et væld af information, afhængig af hvilket DNA man vælger at isolere fra jorden. Det fantastiske ved methoden er at man kan få information fra hele livets træ: bakterier, archae, svampe, planter, dyr mv. Derfor kan methoden give en alsidig information om diversiteten på et givent sted, en information, som ikke kun baseres på planter.
Her ses to NMDS plots af henholdsvis data fra plantainventeringen (abg survey) og eDNA. Hver prik er et prøvefelt, og inddelingen i fugtigheds, successions og næringsgradienter er indikeret af farverne. Visuelt ser de ens ud, og en sammenligningstest af de to figurer gav en protest correlations score på 0,85.

Denne figur viser procentdelen af (gen)fundne arter/slägter/familier i eDNA data i forhold til den floristiske undersøgelse. Disse data er baseret på 9 prøvefelter, og viser de problemer tmL p6-loop markøren har ifht. At genkende planterne på arts, slægt eller familie-niveau.
Alle organismer indeholder DNA og efterlader sig DNA i miljøet hvor de lever. Naturovervågning, hvor biologer i gummistøvler med kikkert og lup om halsen registrerer dyr, planter og svampe i naturen, er de seneste år blevet suppleret med moderne DNA-metoder, hvor man eksempelvis ud fra en lille vandprøve kan se, hvilke dyr der lever i vandet. Kort fortalt går metoden ud på at man fokuserer på et DNA sekvens-område i genomet – et marker-gen – som har et niveau af variation der er egnet til at adskille arter indenfor den gruppe af organismer, som man ønsker at undersøge. Metoderne til sekvensering har længe været flere skridt foran metoderne til at få noget biologisk meningsfuldt ud af de data som kommer ud af sekvenseringen. Der har blandt andet været problemer med at få taget repræsentative prøver, ekstraheret DNA fra meget forskellige jordtyper, og ikke mindst med at analysere data.

I Biowide har målet været at få højkvalitets-DNA prøver der var repræsentative for de 40×40 meter store prøveflader, og samtidig DNA data der kunne vise artsrigdommen. For hver prøveflade samlede vi 81 separate jordprøver, som blev blandet, hvorefter en mindre prøve blev udtaget til DNA ekstraktion med en metode vi udviklede til at fungere optimalt på tværs af de forskellige jordtyper. Vi analyserede marker-gener for bl.a. svampe, rundorme, insekter, "arbuskulær"-svampe, regnorm og planter. Metoden til at frembringe de nødvendige DNA-sekvenser skaber en del "støj", der blander sig med de egentlige biologiske signaler. Hidtil har denne "støj" gjort det svært at estimere hvor mange arter der er i jord-prøven. Arbejdet med at reducere støj resulterede i en ny algoritme – LULU – der hurtigt er i stand til at korrekturlæse DNA-sekvenserne og fjerne oplagte fejl.

Til udviklingen af metoden benyttede vi os af, at vi i Biowide projektet havde lavet grundige registreringer af plantearterne i prøvefladerne, og dermed havde en slags facitliste for hvad vi kunne forvente at finde med vores DNA metode. Det viste sig da også, at de gængse beregningsmetoder til DNA data voldsomt overestimerede antallet af planter, hvorimod anvendelsen af LULU gjorde at vores DNA data stemte ret godt overens med de plantelister vi havde (se figur). Lige præcis planter er nok stadig lettere at registrere med klassiske metoder frem for DNA. Men et af de interessante aspekter ved algoritmen er, at den også kan anvendes på andre organismegrupper såsom svampe, springhaler og rundorme, hvis diversitet normalt ikke bliver inddraget i naturovervågning. De mange DNA baserede biodiversitetsdata fra Biowide prøvefladerne er anvendt i adskillige af de andre analyser der er omtalt og præsenteret i dette skrift.

Figure 1. Effects of curation with the LULU algorithm for clustering methods at 97% level. OTU table metrics before (red = raw) and after (blue = curated) curation with LULU. a) correspondence of OTU (plant ITS2 sequence data) richness vs. plant richness for each of the 130 sampling sites, b) total number of OTUs compared to total plant species recorded (564 species, dashed line), c) percentage of OTUs having taxonomically redundant annotation, d) OTU β-diversity (total richness/mean site richness) compared to plant β-diversity (17.23, dashed line), e) distribution of best reference database (GenBank) match for OTUs retained and discarded by LULU.
NYE METODER TIL KORTLÆGNING AF BIODIVERSITET
Tilbagegangen i biodiversitet verden over skaber et behov for at naturindsatser gøres så effektivt og billig som muligt. Dette gælder også i forhold til svampe, hvor begrænsset viden om denne meget diverse gruppe vanskeliggør arbejdet med at overvåge og fremme truede arter. Det kræver meget høj specialviden at gå i felter og lave svampeinventeringer; det er dyrt og tidskrævende. Formålet med dette studie, som blev udført som specialstudie ved Bioscience på AU, var at undersøge om vi kunne bruge det langt billigere og landsdækkende lidar-datasæt til at sige noget om svampeforekomster i DK.

For at kunne bruge lidar punktskyen, omregned jeg den til forskellige relevante parametre, såsom vegetationshøjde, heterogenitet over ni m² og 20 andre variable. Denne beregning blev lavet for hver m² i prøvefladerne som udgør 1.600 m² (40×40 m). Genomsnitlige nøgleværdier blev derefter udregnet baseret på de 1600 værdier, således at hver prøveflade blev repræsenteret af 3 forskellige værdier for hver variabel. Herefter modellerede vi svampartigrigdommen og artssammensætningen samt antal truede arter pr. prøveflade med de lidar-afflede variable. Det viste sig, at lidar i høj grad kunne bruges til at sige noget om den generelle svampartigrigdom og vegetationens indflydelse på artssammensætningen. Antallet af truede svampe kunne dog ikke modelleres succesfuldt.

Takket være de mange data fra biowide, kunne jeg lave en tilsvarende modellering af svampedata med “gammeldags” fælterbaserede variable, såsom plantelister, jordprøver, opgørelser af dødt ved og analyser af fugtighed og lys i prøvefelten. Det gjorde os også i stand til tolke hvad som var de tre mest betydelige gradienter for svampartigrigdommen og artssammensætningerne. Den vigtigste økologiske gradient handler om vegetationstruktur og går fra...

DIVERSITET AF PLANTER, MOSSER, LAVER OG SVAMPE

Forklaret med data fra luftbåren laser scanner

Af Signe Normand

Vi undersøgte i hvilken grad artsrigdommen af planter, mosser, laver, og svampe fundet i de 130 Biowide-flader kan forklares med 33 Lidar afdelte variable der repræsenterer forskellige aspekter af prøvefladernes abiotiske position, biotiske ekspansion og kontinuitet i tid i rum.

Vi fandt at de Lidar-afledte variable forklarede omkring 22% af variation i antallet af planter, og 50% for svampe, 33% for laver, og 35% for mosser. Steder med mange plantearter var især karakteriseret af stor heterogenitet i vegetationsstruktur og en vedudviklet, men åben, buskvegetation. Mange svampe var især relateret til gamle skove med mange åbninger i kronedækket, mens høj artsrigdom af mosser og laver især var relateret til lokal heterogenitet i terræn og vegetation. Vores resultater viste, at abiotisk position, biotisk ekspansion og kontinuitet i tid i rum var nogenlunde lige vigtige for planter og laver, mens kontinuitet og ekspansion var vigtigst for henholdsvis svampe og mosser. Vi fandt yderligere at kortlægning af det økologiske rum ved hjælp af Lidar i en del af Danmark kan bruges til at forudsige artsrigdommen i andre dele af landet. Vores resultater viser således, at det økologiske rum kvantificeret ved hjælp af Lidar bidrager betydeligt til at forstå variationen i antallet af arter fra sted til sted.

Biodiversitetskrisen står for døren, men vi mangler gode og effektive måder at kortlægge naturen på. Traditionelt bruger man ekspert til både at indsamle og identificere arterne, men denne tilgang gør det umuligt at dække både taksonomisk og geografisk bredt. I de senere år har teknologier inden for feltet remote sensing (satellit, droner etc.) revoluti-
oneret måden hvorpå vi kortlægger jordoverflader og vegetation. En af de nyere teknolo-
ger er luftbåren laser skanning (Airborne Laser Scanning, ALS, også kaldet lidar), som
tilvejebringer data om miljøet i en næsten-naturlig detaljegrad relativt billigt og med stor
geografisk dækning. Sideøbende er der sket stor udvikling indenfor metabarcoding af
ekstracellulært DNA fra prøver taget i naturen; så stor at vi i dag automatisk kan få biolo-
giske "fingeraftryk" der dækker et bredt spektrum af arter. Denne teknik er stadig ret dyr
sammenlignet med ALS, men den kan afsløre detaljer i naturen som er umuligt med ALS,
og derfor kan vi potentielt revolutionere den måde vi kortlægger naturen på ved at med-
tage eDNA data i de nuværende ALS baserede metoder. Der er indtil videre ingen der har
forfulgt denne strategi og derfor er dens potentielle indtil videre ukendt. I dette studie har
vi vist at eDNA – både kombineret med ALS og alene – kan give en pålidelig kortlægning
af naturen, som her er repræsenteret ved et klassisk feltstudie (Biowide) som omfatter
mere end 5000 arter. Efter vi tilføjede eDNA til vore ALS modeller så vi en stor forbedring
i antallet af misklassificeringer; vi kunne nu korrekt klassificere 82% af de ni forskellige
ekosystemer der indgår i Biowide, 100 % af to forskellige næringsstofniveauer, 96% af
tre forskellige fugtighedsniveauer, 98% af tre forskellige successionsstadier og 75% af tre
forskellige niveauer af rødlistede arter. Antallet af misklassificeringer var næsten ligeså
lavt med eDNA alene som hvis det indgik sammen med ALS. Vores resultater påviser at
ALS er et stærkt værktøj til kortlægning af natur, men også at eDNA fanger nogle vigtige
detaljer som ikke kan frembringes med ALS, og at eDNA derfor bør være en vigtig del af
naturlkortlægning i fremtiden.

Figur 1. Klassificeringen af de tre niveauer af rødlistede arter (rød = flere end 5 arter, grøn = 2-5 arter og blå = 0-1 art), samt hvor i det viste rum de observerede niveauer faktisk ligger i virkeligheden (rund = flere end 5 arter, trekant = 2-5 arter, firkant = 0-1 art). 75% af prøvefladerne er korrekt udpeget af vores model. Det viste rum er udspændt af ALS-udledt index for biomasse (Biomass) og graden af unikhed for svampe baseret på eDNA (Fungi eDNA uniquity). Disse var de to vigtigste variable i denne model, men derudover indgår yderligere 4 variable som ikke er vist.
DNA fra miljøet (også kaldet eDNA = environmental DNA) kan bruges til at beskrive biodiversitet (se “fra jord til genetisk diversitet andet steds i skriftet”). Således kan man med svampespecifikke marker-gener undersøge diversiteten af svampe i jorden. En stor del af svampene er synlige en del af året som frugtlegemer, men mange grupper af svampe laver ikke frugtlegemer, eller har kun små eller meget kortlivede frugtlegemer, og er derfor umulige eller svære at registrere med klassiske metoder.

I Biowide-projektet undersøgte vi svampediversiteten på klassisk vis ved indsamling og identifikation af frugtlegemer forestået af svampeeksperten Thomas Læssøe og bistået af adskillige frivillige. Dertil undersøgte vi også svampediversiteten ved at indsamle og DNA-sekvensere jordprøver. Således kunne vi sammenligne resultaterne – iscenesat som det klassiske opgør “Mand mod maskine”.

Hidtidige sammenligninger af frugtlegeme-indsamling og jord-DNA analyser indikerer et ganske lille overlap mellem de to metoder, men disse sammenligninger har som oftest været foretaget alene på en enkelt lokalitet. Jordprøverne i Biowide var større og dermed efter al sandsynlighed mere repræsentative, og Biowide prøvefladerne dækker store miljøgradienter med mulighed for at undersøge mere generelle biodiversitetsmønstre.

Ændringen i artssammensætningen af svampe som fandtes langs miljøgradienterne korrelerede også for de to forskellige lister af svampearter.

Et af de oplegte spørgsmål er om DNA kan bruges til at registrere rødlistevede svampe. Her forventede vi på forhånd, at DNA metoden ville være underlegen, da en trænet mykolog har mulighed for måltettet at eftersøge sjældne svampe på specielle substrater. Desuden vil mykologen lettere kunne dække et større område, hvor jord-DNA metoden er begrænset til at kunne udtage jordprøver der kun dækker en lille del af jordoverfladen i en prøveflade. Men selvom Thomas Læssøe og hjælpere da også fandt flere rødlistevede svampe end DNA metoden, så var forskellen på de to metoder ikke så stor.

Teoretisk set vil DNA fra alle “overjordiske” organiserende i jorden, om end i mindre mængder og mere fragmenteret, så spørgsmålet var, om mængden af DNA fra fx døde stammer eller urtestænger var tilstrækkelig til en ligelig registrering på linje med de jord-
boende svampe. Her viste vores analyser klart at dette ikke var tilfældet, så hvis man ønsker en fuldt repræsentativ registrering af fungaen, vil det være nødvendigt at supplere jordprøvetagningen med prøver af vegetationen.

Mange arter blev tilsyneladende kun registreret med den ene af metoderne, og en af forklaringerne på dette er, at DNA-referencedatabasen stadig er langt fra komplet, og i mange år fremover vil en stor del af den diversitet vi kan registrere som DNA stadig være "nøgne DNA arter" uden kobling til kendte morfologiske arter. Skal kvaliteten og styrken af DNA baserede analyser blive bedre, er det derfor helt essentielt at opprioritere udbygningen og vedligeholdelsen af DNA referencedatabaserne.

Figur 1. Frekvens af arter og OTU’er (DNA arter) i de 130 Biowide prøveflader. a) Frekvens af arter og OTU’er sorteret efter faldende frekvens og grupperet efter arter registreret med begge metoder, kun som frugtlegeme og kun som DNA. y-aksen indikerer antallet af prøveflader hvori en art er observeret, og det samlede antal observationer og arter er angivet for hver gruppe. b) Top 10 mest frekvente arter observeret med de to metoder. Alle arterne er almindeligt observerede arter. Det er tydeligt at arter knyttet til overjordiske substrater (eks. kvist-huesvamp og skæv melhat) er underrepræsenteret som DNA i forhold til frugtlegemer. c) scatterplot af frugtlegeme-baseret frekvens mod DNA baseret frekvens for de 463 arter som blev registreret med begge metoder. d) Artsrigdom for hver prøveflade (begrensset til de 463 arter der kunne registreres med begge metoder). x-akse viser rigdommen estimeret med frugtlegemer, og y-aksen viser rigdommen estimeret med DNA.

DNA i jordprøverne fra Biowide viser, at det er muligt, at forudsige de miljøforhold, fx fugtighed, lys, nærning og pH, som jorden stammer fra. Derudover kan DNA også forudsige om jorden stammer fra særligt karakteristiske habitatere, som fx en bøgeskov, et pilekrat, en tagrørssump osv. Som supplement til de statistiske modeller har vi brugt en gammel retsvidenskabelig metode, hvor man leder efter sjældenheder, fx ualmindelige planter som kun vokser på særlige steder og dermed afslører noget om geografi eller økologi. Det har man tidligere gjort med pollen og andre planterester og denne metode har vi overført til DNA, så vi screener for sjældne planter i DNA-prøven.

Figur 1. Som eksempel er her vist forudsigelserne af vores modeller for én prøveflade. A) Hvilke miljøforhold karakteriserer prøvefladen?

ØKOLOGISK RUM SOM RAMME FOR BIODIVERSITETEN
Et af de spørgsmål som meldte sig i Biowide, var om planterne måske kan forklare en del af diversiteten af de efterfølgende led i fødekæden – eksempelvis de dyr og svampe, som ikke selv kan opbygge organisk stof ved fotosyntese. Spørgsmålet var både relevant i forbindelse med forståelsen af hvordan økologisk rum skal defineres, men også i en mere anvendt kontekst, idet planter udgør kernen i de fleste programmer for kortlægning og overvågning af natur og biodiversitet.

Biowide-data er som skabt til at undersøge dette spørgsmål, og vi opdelte analysen på dyregrupper med forskellig levevis og udvidede analysen til også at omfatte tre genetiske mål for artsrigdom, nemlig antallet af OTU-sekvenser af svampe og eukaryoter fra jordbunden og insekter fra malaiseprøverne (flyvende insekter fanget i teltfælder). Endelig indgik også et indeks over rødlistede arter fra alle andre grupper end planter.

Resultatet af analyserne var at antallet af plantearter ikke er nok til at udtale sig generelt om artsrigdommen af andre grupper. Derfor inkorporerede vi planternes indikatorværdi for miljøforhold som pH, fugtighed, lys og næringsstatus i modellerne. Disse indikatorværdier er sat i system for Europas flora i form af de såkaldte Ellenberg-tal for planternes foretrukne vækstforhold, og ved at tage gennemsnitlige Ellenbergværdier for planterne i en prøveflade, kunne vi bygge modeller hvor artsrigdommen af andre grupper blev en funktion af dels miljøforholdene og dels planternes artsrigdom. Disse multiple regressionsmodeller kunne forklare mellem 12 og 54% af variationen i artsrigdommen af andre artsgrupper og væsentligt mere end de bivariate modeller, hvor kun planteartsrigdom indgik. Desuden viste planteartsrigdom sig at være en generelt positiv og signifikant indikator for rigdommen af andre arter efter at miljøet var taget med i modellen. Kun for løbebiller og eukaryot OTU-rigdom var der ikke en positiv effekt af planteartsrigdom.

Figur 2. Samlet forklaaret variation fra de bivariate og multiple regressionsmodeller.
Hvilke planterarter giver størst diversitet af svampe og insekter?

Hans Henrik Bruun & Rasmus Ejrnæs

Vi har fundet ud af at planternes artsrigdom indirekte kan fortælle os en masse om mangfoldigheden af insekter og svampe. Men fra litteraturen ved vi også, at visse planterarter understøtter mængder af tilknyttede bestøverinsekter, planteædende insekter, mykorrhizasvampe o.s.v., mens andre arter kun har få arter tilknyttet. Ydermere er hovedparten af de planteædende insekter og mider knyttet snævert til en enkelt art eller slægt af planter. Hver planterart udgør altså i sig selv et specialiseret levested, men for et meget variabelt antal specialister, fra mindre end en håndfuld insekter på enebær til over hundrede på hassel. Det rejser spørgsmålet om vi ud fra en planteartsliste kan opstille en endnu bedre indikator for den samlede biologiske mangfoldighed ved at tage højde for forskelle i den artsfulde af specialiserede insekter og svampe der er knyttet til hver slags plante.

Der er en mængde mulige grunde til at visse planterarter har en større tilknyttet artspulje end andre, fx størrelse og livslængde. Man ved at der er flere arter knyttet til store trær, der også kan blive meget gamle, end der er knyttet til en lille enårig art af siv. Plantearter der er vidtudbredte, lokalt talrige og som har været i landet i årtusinder, har – alt andet lige – også flere arter af insekter og svampe tilknyttet.

Vi har brugt data indsamlet i Biowide-fladerne til at efterprøve de beskrevne hypoteser. Data for hvor mange svampearter der er knyttet til hver planterart fik vi fra Svarpeatlas, mens vi hentede data for planteædende insekter og mider i en stor nordeuropæisk database. Fra dette udgangspunkt afprøvede vi to forskellige veje. Dels sammentalte vi blot antallet af kendte insekt- og svampearter knyttet til de plantearter, der var til stede i hver prøvelade. Dels beregnede vi – ud fra plantearternes karaktertræk (størrelse, livslængde, udbredelse og hyppighed o.s.v.) – en forudsagt artsrigdom af tilknyttede arter. Det gjorde vi blandet andet for at vise om metoden kunne virke i en anden egn af verden, hvor databaser som de nævnte ikke findes.

De foreløbige resultater ser meget lovende ud. Hvor planternes artsrigdom slet ikke visste nogen sammenhæng med svampenes artsrigdom, så kan planterigdommen vægtet med antallet af tilknyttede svampearter lede frem til en ganske fin forudsigelse af den svamperigdom vi faktisk har fundet i prøveladerne (se figur). Og det gælder både for mykorrhizasvampe og for nedbrydersvampe. For de planteædende insekter og mider virker vores model knap så godt som for svampene, og bedst for galledannende og minerende dyr. For omkringflyvende insekter og for planteædere der sidder udenpå planterne var der ikke noget vundet ved at kende artspuljen af tilknyttede insektarter. For dem virkede den rå artsrigdom af planter udmærket.

Vi er på denne måde kommet et skridt videre i forståelsen af hvordan planternes artsrigdom og deres diversitet af størrelser og livsformer udvider det økologiske rum for plante-tilknyttede svampe og dyr.
Vi har bygget modeller til forudsigelse af antallet af forskellige grupper af svampe og insekter som funktion af enten artsrigdommen af planter eller summen af mulige links (værtskaber for dyr og svampe) for de plantearter der fandtes i hver af de 130 prøveflader. Søjlerne viser R^2, altså et udtryk for hvor meget af den variation i artsrigdom vi finder mellem Biowide-fladerne som kan forklares af henholdsvis planteartsrigdom og link-sum. Fungi = Alle svampe, Symbionts = biotrofe svampe, Decomposers = Nedbrydersvampe, Arthropods = Alle leddyr, Ext. herbivores = Planteædende insekter udenpå planter, Flyers = flyvende insekter, Predators = rovinsekter, Int. herbivores = Planteædende insekter inde i planter (galler og miner). NS= ikke signifikant, ** = $p < 0,01$, *** = $p < 0,001$.

Tabel 1. Mellemhøjere korelation mellem den totale artsrigdom for planter og artsrigdom for insekter.
ARTSRIGDOM I DET ØKOLOGISKE RUM – FORSKNING I PROCES!

Rasmus Ejrnæs & Lars Dalby

Vi forsøgte at bruge en SEM til at modellere karplanternes artsrigiddom med, men idet planterne selv udgør de centrale dele af ekspansion, blev modellen så enkelt, at vi lige så godt kunne bruge det mere fleksible værktøj som en generaliseret lineær model udgør. Her kan man lettere arbejde med poisson-fordelede data (tælledata for artsantal) og der er flere muligheder for at transformere forklaringsvariabler og kigge på diagnosticke plots over fordelingen af modelernes residualer.

En af de vigtige forklaringer på planterigdom på planterigdom som er blevet fremhævet i den nyere videnskabelige litteratur er de evolutionære og historiske varierende artspulje. Hvis der er mange arter som er tilpasset et miljø og som har formået at indvandre til et landområde, så vil der også være mange arter på lokaliteten. For at inddrage denne effekt har vi beregnet en økologisk artspuljevektor som funktion af det abiotiske miljø (position i det økologiske rum) og en geografisk artspuljevektor som funktion af prøvefladeres UTM-koordinater i Danmark. Disse vektorer er beregnet ud fra alle danske karplanters Ellenbergværdier og antallet af arter i Atlas Flora Danica ruderne som funktion af deres geokordinater. Altså uafhængige data.

Tabel 1. GLM med negativ binomial varians for artsrigdommen af karplanter og storsvampe. Effektstørrelser, reduktion i deviance og P-værdi er vist for signifikante variabler (p < 0,05, Chisq.test). Modellernes pseudo r² og uforklarede deviance er også angivet nederst i tabellen. De forklarende variabler er opdelt i variabler som beskriver position, ekspansion og kontinuitet samt co-variabler, som ikke er en del af det økologiske rum.
HVORDAN DEFINERER MAN EGENTLIG UNIKHED FOR EN LOKALITET?

Rasmus Ejrnæs

Vi har arbejdet meget med at forstå variationen i artsrigdom i Biowide, men når vi taler om naturbeskyttelse, er man ofte mere interesseret i om der er sjældne og truede arter. Det kan man let lave en optælling af, når vi taler om karplanter eller fugle, hvor vi har omfattende atlasundersøgelser, senest Atlas Flora Danica, som har kortlagt plantearternes nationale udbredelse. For andre artsgrupper er vores viden mindre fuldstændig, men så kan man måske bruge rødlistens vurdering af arternes trusselskategorier. Men også her kommer vi til kort for mange arter, da det kun er knapt en tredjedel af alle kendte danske arter som er rødlistevurderet.

Med afsæt i Biowides mange artsdatasæt har vi opstillet en formel for unikhed som bygger på en beregning af sandsynligheden for at møde hver af de forskellige arter eller OTU’er som vi har fundet i en tilfeldig prøve. Denne sandsynlighed er en funktion af artens hyp-pighed i de habitater, som den findes i, og af disse habitaters udbredelse i Danmark. På den måde vil sandsynligheden for at finde en art som er registreret på en mark altid være høj fordi markene er så udbredte i Danmark; mens en art som udelukkende forekommer i gammelt ugedsket kalkgræsland, og måske endda er sjælden på dette levested, vil have en meget lille sandsynlighed for at blive fundet i en tilfeldig prøve. Formlen for unicitet – eller uniqueness som vi har døbt det på engelsk, ser sådan her ud:

\[U = \sum_{i=1}^{m} (1 - \sum_{j=1}^{n} q_{ij} * r_j)^x \]
Hvor uniquity (U) er summen af de enkelte arters bidrag fra art "i" til "m", og artens bidrag er defineret som sandsynligheden for at arten IKKE findes i "X" prøveflader, hvilket svarer til 1 minus sandsynligheden for at arten findes i en prøveflade opløftet til en potens af "X". Sandsynligheden for at arten findes i en prøveflade er givet ved summen af sandsynlighederne for alle de habitattyper arten forekommer i og sandsynligheden for disse er givet ved artens frekvens i habitattypen (qij) ganget med habitattypens andel af det samlede undersøgte landareal (rj).

Selvom vi slet ikke er færdige med at udrage viden af de indsamlede Biowidedata, så har vi allerede lært en masse, og nedenfor har vi gjort et forsøg på at udrage essensen.

UDLÆGNINGEN AF PRØVEFLADER

Den store udfordring med at finde steder i Danmark som kunne repræsentere forskellige økologiske referencesituationer, mindede os om hvor lidt natur vi har tilbage, som ikke er overvejende præget af skovbrug, landbrug eller infrastruktur. Landet er gennemskåret af stier og veje, vegetationen er modificeret ved såning, plantning, ukrudtsbekæmpelse, tynding og hugst af træer, vandet er afløbet gennem grøfter og dræn og der er tilført næringstoffer aktivt eller passivt alle vegne. Vi lagde ud med en målsætning om prøveflader på 100 x 100 meter, men måtte resignere og reducere til 50 x 50 meter og hurtigt derefter til 40 x 40 meter da større prøveflader ikke var mulige at udlægge i de sidste relikter af græsland på stejle skrænter, små urørte skovpartier og små grundvandspåvirkede moser uden græfter. Det var også en udfordring at få tilladelser til at lave videnskabelige undersøgelser. Mange lodsejere takkede nej til vores henvendelse med begrundelse i hensynet til jagtinteresser og privatlivets fred. Desuden viste det sig, at være svært at overholde aftaler om at prøvefladerne skulle friholdes fra indgreb i de foregående undersøgelserne varede. Måske siger det bare noget om hvor meget vi mennesker hele tiden blander os i naturens gang – ikke en plet på Danmarkskortet ligger hen i flere år uden en eller anden form for drift, pleje eller omlægning. Vi havde bevidst fravalgt hav, søer, vandløb og saltpåvirkede strandenge, og vi havde været forsigtige med at medtage meget forstyrrede økosystemer som strande og hvide klitter. Men kortset fra det kan vi se af vores analyser, at det lykkedes os at repræsentere stort set al den variation vi i øvrigt kender fra landbaserede økosystemer, fra krat og naturskove over moser, klitter og græsland til dyrkede marker og plantager. At vi kom i mål skyldes i høj grad at der var lodsejere – offentlige som private – der takkede ja til at huse projektet.

KORTLÆGNING AF BIODIVERSITET

Vi har gennemført en omfattende kortlægning af biodiversiteten på landjorden og selvom vi kun har inventoreret et samlet areal svarende til ca. 50 fotboldbaner, har vi alligevel fundet mange tusinde arter af planter, dyr og svampe. Erfaringerne viser at dette kun er muligt hvis man kan ansætte ekspert inden for de mange forskellige grupper af arter. Vi var heldige, at der stadigvæk findes eksperter som vi kunne knytte til projektet. Inden for flere af de vanskelige artsgrupper er de førende eksperters dag arbejdsløse eller daglejere, og det er svært at tolke dette andet sted at, at beslutningstagerne i samfundet generelt ikke tillægger det nogen synderlig værdi at have et stort kendskab til den danske biodiversitet. Det er i hvert fald ikke nødvendigvis en evne som bliver be- lønnet med fast ansættelse i den akademiske verden længere. På trods af dette dystre perspektiv, valgte vi i Biowide at være optimistiske og bruge de ansatte ekspertiser til at etablere en mesterlæreordning. Orden henved i at dygtige og engagerede amatører blev inviteret med ud at registrere arter under ledelse af Biowides ekspertiser, der blev afholdt velbesøgte kurser og oplæring i sortering og artsbestemmelse af de indsamlede leddyr.
på Naturhistorisk Museum i Århus. Dette har styrket interessen for naturhistorie og kompetencerne i artsbestemmelse, især blandt biologister og engagerede amatører. Til gengæld viste det sig, at projektet var mindre egnet til at frivillige kunne registrere arter efter eget valg og i eget tempo. De data som skulle bruges til sammenligninger på tværs af fladerne, måtte nødvendigvis indsamles på sammenlignelige måder, og når man skal sikre ensartet kortlægning af 130 flader fordelt i hele Danmark, så er det ikke længere en ferietjans, men hårdt arbejde.

De kortlivede og mobile insekter og ustabile svampefrugtlegemær har ikke overraskende budt på særlige udfordringer i Biowide. Selv efter flere indsamlingsrunder og med flere forskellige indsamlingsmetoder taget i brug, er vi stadig langt fra at have fundet alle arter af svampe og hvirvelvæsker på fladerne – også selvom vi på forhånd havde udelukket nogle af de mindste og sværeste artsgrupper såsom de fleste af tovingerne (fluer og myg m.fl.) og sæksvampene. På trods af disse begrænsninger har vi oparbejdet et estetiske datasæt over Danmarks landbaserede biodiversitet, og det har været spændende og lærerigt for de aktive at være med i.

KORTLÆGNING AF DET ØKOLOGISKE RUM

DNA OG LIDAR

I Biowide har vi budt de nyeste metodiske landvindinger velkommen og satset en væsentlig del af projektet på at indsamle jordprøver og ekstrahere og sekvensere DNA’et i jorden (såkaldt metabarcoding) med henblik på at blive klogere på nogle af alle de arter som vi ikke umiddelbart kan finde med traditionelle metoder, eksempelvis rundorme og mikrosvampe. Samtidig har vi haft som formål at evaluere om metabarcoding i denne form kan bruges til at kortlægge biodiversiteten. Vores analyser viser, at det faktisk er muligt at få et retvisende billede af både sammensætningen og diversiteten af arter som efterlader DNA-spår i jordbunden. Undervejs til denne erkendelse har vi dog selv måttet udvikle metoder til bioinformatisk oprengning af sekvensdata, og her har det store Biowide-datasæt været til stor nytte. Vores evalueringer viser også at hvis
man skal repræsentere hele biodiversiteten er det nødvendigt også at indsamle prøver af overjordiske substrater såsom planter og sten og måske er det også hensigtsmæssigt at indsamle prøver fra anderledes levesteder som fx myrter, plantetuer, musegange, hule træer, poresvampe, kokasser og lignende. Vores resultater åbner helt nye perspektiver for en mere omfattende biodiversitetskortlægning i tid og rum ved hjælp af DNA-sekvensering. En af ulemperne ved DNA-metoderne er at referencebibliotekerne er så ufuldstændige og fejlbehæftede, at det endnu ikke er muligt at få en pålidelig identifikation/annotering af sine DNA sekvenser. I stedet må man arbejde med OTU'er – Operational Taxonomic Units.

Vi har også undersøgt muligheden for at bruge nationale LiDAR-datasæt til at forudsige variation i land Jordens artsrigdom. Potentialerne for dette er store, og eksempelvis kan vi vise hvordan LiDAR overbeviser de effekter som følger af stigende kompleksitet i vegetationen fra lysåbne plantsamfund til krat og skove. En af de artsgrupper som i særlig grad responderer på denne gradient er jo svampene.

PLANTER SOM INDIKATORER FOR DEN BREDE BIODIVERSITET

HVAD KAN SÅ FORKLARE ARTSRIGDOMMEN AF PLANTER?

Vores analyser af planternes artsrigdom viser at der er flest arter af planter i miljøer som har udviklet et stor artsplug af planter i evolutionært tid. Artsplujerne er generelt større i centrum af det økologisk rum end i periferier, dog med en forskynding mod lysåbne og kalkrige miljøer. Og artsplujerne er lidt større i det østlige Danmark på Sjælland, Lolland, Møn, Fyn og Østjylland end i Nord- og Vestjylland. Effekterne af artsplujerne afspejler sig også i vores Biowidedatasæt. Når man har taget højde for dette, er der stadigvæk signifikante positive effekter af stigende pH og en stærk negativ effekt af den kultivering som kendegnere landbrugsarealerne. Lidt overraskende kan vi ikke finde signifikante effekter
af tidslig og rumlig kontinuitet. Det er ligeledes en overraskelse at der ikke kan ses en signifikant negativ effekt af høj næringsstatus. Dette skyldes muligvis at der i modellen er indbygget en positiv effekt for lysåbenhed i artspuljen, at nogle af de artsrige elsesumpes netop har en høj næringsstatus og at der er en stor negativ effekt for landbrugspåvirkning i modellen.

HVAD KAN FORKLARE FOREKOMSTEN AF UNIKKE ARTER?

Vi er klar over at artsrigdom ikke er det samme som biodiversitet. På større skala vil der være en stigende betydning af sjældne arter, og ofte vil de være sjældne som følge af menneskeskabte miljøforandringer. Der er udviklet metoder til at prioritere netværk af beskyttede områder som til sammen beskyttet flest mulige arter, men der er ikke så mange metoder til at vurdere en konkret lokalitets unikke bidrag til biodiversiteten. Den enkleste tilgang er naturligvis blot at tælle antallet af sjældne eller unikke arter som forekommer på lokaliteten, men for mange af de arter vi har kortlagt kender vi ikke deres nationale udbredelse og for store dele af de kortlagte genetiske diversitet har vi ikke engang navne på arterne. Vi valgte i stedet at definere unikhed som en skalær parameter, som tildeler alle arterne på et sted en generel unikhedsværdi som udtrykkes sandsynligheden for at arten ikke bliver fundet i en undersøgelse af en vis størrelse. Forudsætning for at kunne gøre dette er at man har en a priori viden om hvor stor en del af landskabet en prøveflade repræsenterer. Eksempelvis repræsenterer vores dyrkede marker jo ca. 60% af landskabet, mens et ekstremrigkær som Vandplasken eller Uggerby Strand repræsenterer under en promille af landskabet. Vi har kaldt vores nye unikhedsmål for unicitet – på engelsk uniquity – og vi kan demonstrere at det også kan beregnes ud fra genetiske data. Samtidig viser vores data, at unicitet er nøje knyttet til levestedernes sjældenhed. Dette er måske banalt, men det giver altså mening at bevare sjældne levesteder, fordi de bidrager uforholdsmæssigt meget til biodiversiteten overordnet set i det omkringliggende landskab.

HVAD HAR FORSKNINGEN I ØKOLOGISK RUM LÆRT OS?

Fokus på økologisk rum har været en slags dogmeregel i Biowide. Vi har tvunget os selv til at designe projektet og analysere data med økologisk rum som den bærende forskningsidé hele vejen igennem. Fokus omfatrer naturligvis også at undersøge interessante hypoteser om hvad der egentlig kan forklare variation i vores biodiversitet. Nogle af de resultater vi har fundet er trivielle, men når man som forsker leder efter dokumentation for banale sammenhænge som alle er enige om, viser det sig ofte, at der ikke findes empirisk evidens for disse. Eksempelvis kunne vi godt have gættet på at store, almindelige, længelevende og hjemmehørende plantearter byder på flere levesteder for dyr og svampe end andre planter, men nu kan vi faktisk også vise at det forholder sig sådan. Tilsvarende har vi kunnet vise, at planter helt generelt er gode indikatorer for den øvrige biodiversitet. Nogle af de resultater vi har fundet er trivielle, men når man som forsker leder efter dokumentation for banale sammenhænge som alle er enige om, viser det sig ofte, at der ikke findes empirisk evidens for disse. Eksempelvis kunne vi godt have gættet på at store, almindelige, længelevende og hjemmehørende plantearter byder på flere levesteder for dyr og svampe end andre planter, men nu kan vi faktisk også vise at det forholder sig sådan. Tilsvarende har vi kunnet vise, at planter helt generelt er gode indikatorer for den øvrige biodiversitet. Nogle af de resultater vi har fundet er trivielle, men når man som forsker leder efter dokumentation for banale sammenhænge som alle er enige om, viser det sig ofte, at der ikke findes empirisk evidens for disse. Eksempelvis kunne vi godt have gættet på at store, almindelige, længelevende og hjemmehørende plantearter byder på flere levesteder for dyr og svampe end andre planter, men nu kan vi faktisk også vise at det forholder sig sådan. Tilsvarende har vi kunnet vise, at planter helt generelt er gode indikatorer for den øvrige biodiversitet. Nogle af de resultater vi har fundet er trivielle, men når man som forsker leder efter dokumentation for banale sammenhænge som alle er enige om, viser det sig ofte, at der ikke findes empirisk evidens for disse. Eg

fleste af Biowides forskere, at nogle af de mest artsrige prøveflader er gamle tilgroede og forsumpede krat. Sådanne krat med pil, birk, el, ask, bævreasp, gran, fyr og en række forskellige buske har ikke nogen særlig høj status i naturforvaltningen. Man kan derfor frygte at de vil blive ryddet for at fremme et landskab med mere åbne enge og moser. Her kan Biowide minde naturforvaltningen om værdien af de tilgroede krat.

FREMTIDEN

Biowide afsluttes nu, men datasættet, analyserne og arbejdet med at publicere de mange spændende resultater vil fortsætte i de kommende år. Biowides *afterlife* er allerede blevet til virkelighed inden projektets afslutning, idet DNAMark projektet under støtte af Aage V Jensens fonde har inddraget prøvefladerne i Biowide i udviklingen af en gene-relt metode til kortlægning af biodiversitet ved hjælp fra eDNA. Tilsvarende indgår de indsamlede jordprøver og DNA-data i Soil Tracker projektet med støtte fra Innovationsfonden, et projekt som undersøger muligheden for at bruge genetiske spor fra jordrester i retsgenetiske analyser i forbindelse med politimæssigt opklaringsarbejde. Vi byder alle til at udnytte de indsamlede informationer i Biowide velkomne og stiller data til rådighed for den fremtidige forskning.
BIOWIDE
– 4 års udforskning af Danmarks biodiversitet

BioWide.dk